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Overview

+ Approach
+ Model Structure

= Cognitive model

= Physical and environmental models
+ Error behavior

= Coverage and sources

= Answers to questions

+ Work in progress/future extensions




General Approach

+ Traditional cognitive modeling approaches
= History of modeling simple, static laboratory tasks
= Now ready to handle complex, dynamic environments
= How?

+ Traditional ecological approaches
= Good for describing task-environmental structure
= Make simplistic assumptions about the operator

+ Our goal: Unify the two approaches
= Cognitive model informed by environmental analysis ;




ACT-R

+ ACT-R computational cognitive architecture
= Production system
= Semantic network

+ Based on “rational analysis”

= Activation of items in the semantic network driven by a
Bayesian equation combining current system context with
frequency & recency information

= Activation determines retrieval probability and speed

= Production selection (called “conflict resolution”) driven by
equation balancing goal value, cost (in time), and success

rate

+ Important note: System is noisy
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Ecological/Task Analysis

+ Use environmental modeling to provide the ACT-R/PM
model a realistic “external” environment

= For example, realistic time constraints based on model of
aircraft dynamics, runway layout, information layout, etc.

+ Use environmental analysis (based in part on SMES) to:
= |dentify problem-solving and decision-making strategies

= Set parameters in ACT-R representing the information
landscape for those strategies
= Frequency and recency
= Success rate and costs

O




Model Scope

+ Model of single individual, the pilot, and the environment
+ Currently, we do not model the FO

+ Also, no model of errors resulting from
miscommunications between agents

= Not presently a major strength of ACT-R, and it appeared
to us that other models could better address this

+ Does not model low-level control of steering
= Airport is a series of “rails”
= However, steering g-force constraints respected

Focus on Adaptation and Cognitive Limits to Adaptation

O




Decision (Goal Selection) Flow
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Maintenance Goals

+ During routine (straight) taxiing, all these goals will
regularly be made the focus

+ When one of these goals completes, it can return
iInformation to the top goal
= Example 1: If an incursion is detected, it will return a note

to the main goal to next push a goal to handle the
Incursion

= Example 2: Updating location might determine that there’s
an intersection coming up, which will return a note to the

main goal to deal with it

+ Satisfying these goals takes time




ook for Incursion

+ Visual scan of scene looking for anything untoward on a
rail

+ WIll pick up other objects that may be relevant, like new
signs in view
= If no incursion, then this will be returned to the top goal

+ If there is an incursion, top goal is told so

+ Top goal pushes “handle incursion” subgoal

= Behavior would be to break as quickly as
possible/necessary

= Not actually implemented

O




Listen for Hold

+ Very rapid in the case of no available auditory stimuli

+ When such stimuli are available, listen for a few
moments to determine if this is a hold issuance

o If SO, return to top goal with that information
+ Top goal pushes “deal with hold” subgoal




Maintain Speed

+ If the model did low-level steering, this would be more
Inclusive

+ Checks speed against standard speed bounds
+ If plane is too fast, either back off throttle or apply brake

+ If plane is too slow, either let up on brake or increase
throttle

+ Fairly rapid, but there is a little time in there to actually
make the decision and to perform the relevant motor

movements




Update Location

+ Current location represented in a qualitative way
= On taxiway X
= Between taxiways Y1 and Y2
= Heading toward Y2

+ Updated primarily by reference to signs

+ In aricher visual environment, this would be much more
developed
= Visual scene cues (especially in familiar airports)
= Radio cues

O




Make a Turn Here?

+ This can be very simple:
= If the intersection coming up is a “T” then a turn must be
made
= Otherwise, model generally relies on memory of turns to
decide whether to turn
m EXpectancies can play a role here

+ This is a potential error source

= Makeup of errors suggests that this is uncommon as a
decision error, though can easily happen as a planning

error




Which Turn?

+ Model explicitly chooses a strategy for determining
which turn to make

+ Different strategies have different time demands
+ Thus, model is sensitive to environmental constraints
= Aircraft dynamics
= Signh placement
= Taxiway geometry
+ Considers time cost and rough success rate information
= Most accurate strategy given time available (e.g. Payne,

et al.)




Turn Decision Strategies

+ Strategies available:
= Remember
m Fast, increasingly inaccurate

= Turn toward gate
= Not quite as fast, surprisingly accurate in most airports

= Turn which reduces larger of XY distance
= Moderately fast, much more accurate than you’d think

= Derive from “map knowledge”

= Slow
= High accuracy in principle, but still error-prone

+ Buy time and re-assess (brake)

O




Turn Execution

+ Speed in a turn is determined by
= Turn radius (hard, 90, soft)
= G-force limitations (guideline is 0.25 g’s)
= Model brakes a/c in time to meet speed threshold

+ While we don’t model the control movements made by
the pilot during the turn, we assume that this requires
visual guidance

= We “lock” the visual system to the relevant yellow line
during the turn

O
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Physical Model

+ Model of physical aircraft based on
= Nissan car simulator
= Aircraft specifications from Boeing and NASA
= Adjustments from physics first principles
+ This model determines aircraft response to
= Thrust
= Braking
+ Time is a crucial resource to the cognitive model --

Physical model provides temporal “landscape”




Thrust Effects -Cheng et al. 2001




Brake Effects - Cheng et al. 2001
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Aircraft Model: Start from Stop
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A/C Model: Landing Timeline
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Visual Environment Model

+ Used the database from the NASA flight simulator
+ Aircraft position and heading used to determine what

objects should be visible

= Yellow lines

= Signs

= Distance from each
+ Work is in progress on degrading the representation of

text at longer distances

= ACT-R/PM’s Vision Module contains a “best guess”
mechanism for degraded input

= This is another potential error source

O




Task Environment Model

+ SME provided us with Jepp charts for other airports with “nominal” taxi
routes indicated. N = 284 total turns analyzed

= Different airports
m Near grids: Atlanta, Dallas/Ft Worth, SeaTac, Denver
m More like O’'Hare: JFK
= In between: San Francisco, Miami, Los Angeles

+ Discoveries:
= “XY” heuristic is good across the board
= “Toward terminal” heuristic is good many places, but not at O’Hare

= All simulated turns at O’Hare where both these heuristics fail, at least
one error was made ....
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Average Taxl Route Length
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Error Behavior

+ Several sources

= Retrieval failure/mis-retrieval
s Exacerbated by memory-based workload

= Use of less accurate strategies to meet time constraints
= Exacerbated by temporal workload

= Perceptual failures
+ Coverage
= The decision errors are at least amenable to explanation

= Prediction is difficult
= Need a priori basis for setting all parameters for all pilots

= Some execution errors can be modeled _




Continuing/Future Work

+ Very near term

= Monte Carlo simulations to explore parameter sensitivity
+ Already mentioned

= Degraded perceptual inputs
+ Questions to answer

= Are there other decision strategies? If so, how long do
they take and how well do they work?

+ Adding FO model
= Would need more detailed information about FO tasks to

help determine behavior of that model




Questions

+ Is there a way to validate the conclusions from the
modeling?
= Would need more data, and more detailed data

= Might be able to test some of the model’s tendencies
better by more closely examining model’s behavior and
designing studies that really test where model is most
vulnerable to error

= More time for model-building wouldn’t hurt

O
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